Fast formation of a black inner α‐Al2O3 layer doped with CuO on Al–Cu–Li alloy by soft sparking PEO process

Author:

He Xiaorui1,Feng Tian12,Cheng Yulin1,Hu Panfeng1,Le Zhengzhou1,Liu Zihua1,Cheng Yingliang1ORCID

Affiliation:

1. College of Materials Science and Engineering Hunan University Changsha China

2. Geely Automobile Research Institute (Ningbo) Co., Ltd Ningbo China

Abstract

AbstractForming high‐temperature α‐Al2O3 phase under soft sparking is an intriguing phenomenon in plasma electrolytic oxidation (PEO) of Al alloys, which contradicts the low energy input of the process. In this study, α‐Al2O3 doped with black CuO is formed beneath an amorphous white outer layer on Al–Cu–Li alloy by PEO in a dilute silicate electrolyte under soft sparking. In comparison, reddish coatings with dominating γ‐Al2O3 are formed under the conventional plasma discharges, although blackish inner layer with α‐Al2O3 can also be exposed by heavily polishing the samples. In order to know the underlying mechanism, temperatures at the coating surface and the underlying substrate have been monitored by a thermocouple under the conventional and soft sparking PEO regimes, respectively. Interestingly, high temperatures are detected in the case of soft sparking rather than PEO with strong discharges. The formation of CuO, quartz, and cristobalite within the soft sparking coating also supports the existence of high temperature. Hence, the formation of α‐Al2O3 under soft sparking can be resolved to the conventional thermal activation mechanism, without the need of seeking other plausible explanations. Thermal condition evaluation for soft sparking PEO suggests that values of the effective thermal conductivity during PEO process for the outer layer and the barrier layer at the coating/substrate interface might be lower than ∼0.05 and ∼0.0017 W m−1 K−1, respectively. It is believed that the amorphous structure of the outer and barrier layers effectively blocks the heat dissipation, facilitating the formation of a highly wear‐resistant inner layer with α‐Al2O3, CuO, and the other high‐temperature species under soft sparking.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3