One step densification of SDC—Na2CO3 nano‐composite electrolytes for SOFC applications by cold sintering process

Author:

Murutoglu Murat1ORCID,Gultekin Aygul Alkan2,Gunhan Busra13,Ucun Tugce1,Buyukaksoy Aligul1,Ozsarac Ugur2,Yilmaz Huseyin1ORCID

Affiliation:

1. Department of Materials Science and Engineering Gebze Technical University Kocaeli Turkey

2. Faculty of Technology Sakarya University of Applied Sciences Sakarya Turkey

3. Department of Metallurgical and Materials Engineering Kutahya Dumlupinar University Kutahya Turkey

Abstract

AbstractSm0.2Ce0.8O1.9‐ 30% Na2CO3 (Sm doped ceria (SDC)‐30N) nano‐composite electrolytes were densified in a single step via cold sintering process (CSP). At 200°C and 450 MPa of uniaxial pressure, samples up to 97% of their theoretical density could be obtained. The effect of processing parameters, such as temperature, uniaxial pressure, processing duration, and moisture content, on the densification of the nano‐composite electrolytes was investigated. The thermal, microstructural, and electrical properties of nano‐composites were investigated by differential scanning calorimetry, X‐ray diffractometer, scanning electron microscope, and EIS analysis. SDC crystallite sizes were found to be around 25 nm, barely coarsened after CSP by which the true nano nature of the nano‐composite could be preserved. Because, by conventional processing high density values could not be attained and high processing temperatures in excess of 600°C had to be used, promoting particle coarsening. The highest total electrical conductivity was found to be 2.2 × 10−2 S cm−1 at 600°C, with an activation energy of 0.83 eV for SDC‐30N nano‐composites. The present investigation revealed that the implementation of cold sintering technique resulted in significant enhancements in the densification of nano‐composite electrolytes, thereby rendering them suitable for efficient utilization in SOFC applications, as compared to the conventional production methods.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single composite electrolyte prepared by infiltration and characterization;International Journal of Hydrogen Energy;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3