Preparation of isotropic submicron spherical boron nitride particles by restricted template method

Author:

Tian Zhaobo123ORCID,Sun Siyuan4,Du Songmo2ORCID,Zhao Dengke2,Zhang Jie2ORCID,Li Fei2ORCID,Chen Zhanglin2ORCID,Zhu Yuan1ORCID,Cui Wei2,Liu Guanghua2

Affiliation:

1. School of Microelectronics Southern University of Science and Technology Shenzhen China

2. State Key Laboratory of New Ceramics and Fine Processing Tsinghua University Beijing China

3. BOPON New Materials Technology Co. Ltd. Shenzhen China

4. Chinese Academy of Engineering Innovation Strategy Beijing China

Abstract

AbstractHexagonal boron nitride (h‐BN) has received considerable attention, due to its high thermal conductivity and electrical insulation. However, the intrinsic platelike structure with the strong anisotropic property restricts its applications, and it is necessary to synthesize isotropic spherical h‐BN particles (SP‐BNs) with submicron size. Till now, methods to prepare (SP‐BN) still exist problems, such as high oxygen impurities and pollution, generated by the ammonia and pyrolysis of precursors. Here, a relatively green reaction between the restricted template of carbon nanospheres and boron trioxide (B2O3) under elevated temperature is conducted, and the SP‐BNs with an average diameter of 200–300 nm (named Nano‐BN‐s) have been successfully synthesized. Comprehensive scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction characterizations confirm the obtained products are spherical boron nitride. With the analysis of X‐ray photoelectron spectroscopy and Fourier transform infrared, the reaction mechanism is briefly discussed. These results indicate the reaction occurs on the restricted template of carbon nanospheres, and the C atoms are substituted by B and N atoms as the reaction progress, forming the Nano‐BN‐s. What is more, the restricted template method plays a key role in the design and improves h‐BN‐based materials in the future and may also be extended to form other novel materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3