Affiliation:
1. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing China
2. School of Materials Science and Physics China University of Mining and Technology Xuzhou China
Abstract
AbstractFine‐grained BaTiO3‐based ceramics with an average grain size of 120−140 nm were prepared by a chemical coating method. The effect of Ho‐Dy concentration on the microstructure, dielectric properties, and reliability of BaTiO3‐based nanoceramics was investigated. Results showed that appropriate doping contents of Ho and Dy provide the highest dielectric constant of 2323 at room temperature and the temperature stability satisfied EIA X7R specification. Higher doping concentration specimens exhibit lower dielectric constant but gentler temperature stability, indicating thicker grain shells. The failure time under the highly accelerated lifetime test increased along with the increase of Ho‐Dy and was consistent with the impedance analysis results. Doping elements are mainly distributed in grain shells, leading to an increase of resistance and activation energy. The compositions for the highest dielectric constant and best reliability were not the same, providing support for the composition design of dielectric layer material for different BME‐MLCC applications.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献