Affiliation:
1. Department of Engineering and Materials Physics Institute of Chemical Technology—Indian Oil Odisha Campus Bhubaneswar India
Abstract
AbstractDue to various structural and optical properties, metal chalcogenide nanomaterials are favorable candidates for different optoelectronic applications. In the current report, Cu2Te/NiTe nanocomposites were synthesized via the facile hydrothermal method. With the variation of concentration of Cu and Ni, various materials had been prepared along with pure Cu2Te and NiTe. The observed several vibrational modes in the material through the Raman spectroscopy are well agreed with the appearing phases. The morphological study confirmed the nanostructures are combination of nanoparticles with sheets. The size of nanoparticles varied in the range of 66–34 nm. The absorbance spectra of the nanocomposite exhibit a blueshift and support the enhancement in the optical bandgap. The value of bandgap energy of the composite samples has been noted in the range of 1.8–2.2 eV. This bandgap range enables the material for various optoelectronic applications such as solar cell and other photovoltaic devices. Thermal analysis of the material demonstrates the presences of several endothermic and exothermic peaks. Thus, several studies on the material prevail its various applicability as optoelectronics as well as other thermal application.
Subject
Materials Chemistry,Ceramics and Composites
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献