Effects of Gd3+ substitution on the structure, photoluminescence, scintillation, and thermometric features of Pr3+:Lu2Zr2O7 phosphors

Author:

Xie Tian1,Zhang Chengbin1,Jiang Pan1,Lei Ruoshan1,Lei Lei1ORCID,Li Bingpeng1,Xu Shiqing1ORCID

Affiliation:

1. Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province Institute of Optoelectronic Materials and Devices China Jiliang University Hangzhou China

Abstract

AbstractIn this study, it is shown how the photoluminescence, scintillation, and optical thermometric properties are managed via the introduction of Gd3+ ions into Pr3+:Lu2Zr2O7. Raman spectra validate that partial replacement of Lu3+ with Gd3+ can promote the phase transition of Lu2Zr2O7 host from the defective fluorite structure to the ordered pyrochlore one. Upon 289 nm excitation, all the samples emit the 483 (3P0 → 3H4), 581 (1D2 → 3H4), 611 (3P0 → 3H6), 636 (3P0 → 3F2), and 714 nm (3P0 → 3F4) emissions from Pr3+ ions, which are enhanced with the addition of Gd3+ ions due to the modification of crystal structure. Dissimilarly, the X‐ray excited luminescence spectra consist of a strong emission located at 314 nm from Gd3+ ions (6P7/2 → 8S7/2), together with the typical emissions from Pr3+ ions, which exhibit different dependences on the Gd3+ concentration. When the luminescence intensity ratio between the 3P0 → 3H6 (611 nm) and 1D2 → 3H4 (581 nm) transitions is selected for temperature sensing, Pr3+:(Lu0.75Gd0.25)2Zr2O7 shows the optimal relative sensing sensitivity of 0.78% K−1 at 303 K, which is higher than that of the Gd3+‐free sample. Therefore, the developed Pr3+:(Lu, Gd)2Zr2O7 phosphors have the applicative potential for optical thermometry, X‐ray detection, and photodynamic therapy.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3