Affiliation:
1. Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai China
2. Shanghai Key Lab of Modern Optical System University of Shanghai for Science and Technology Shanghai China
3. Shanghai Environmental Biosafety Instruments and Equipment Engineering Technology Research Center University of Shanghai for Science and Technology Shanghai China
Abstract
AbstractIn this work, we fabricated a novel spinel‐type phosphor material MgAl2−xGaxO4 doped with Cr3+ by the high‐temperature solid‐state sintering method. The crystal field environment of the spinel was tuned by replacing the Al ions with Ga3+ ions of different concentrations. The cell volume and Dq/B gradient increase from 2.82 to 2.62 with increasing Ga3+ ion doping concentration. This also implies a gradual decrease in the field strength of the crystal. Based on this, the excitation spectra of MgAl1.995−xGaxO4:0.5%Cr3+ phosphors yield a redshift. Increasing the Ga3+ ion doping concentration also improves the emission intensity and thermal stability of the phosphors, and the emission intensity of the Ga3+‐doped phosphors is significantly increased. For a Ga/Al ratio of 1, the thermal stability of the phosphor emission is optimal. The emission intensity at 140°C can maintain 76% of the emission intensity at room temperature, indicating that appropriate Ga3+ ion doping can improve the emission efficiency and thermal stability of the phosphors.
Subject
Materials Chemistry,Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献