Affiliation:
1. Department of Statistics University of California Irvine California USA
2. Department of Psychological Sciences University of Missouri – Columbia Columbia Missouri USA
3. Department of Biostatistics and Data Science, Center for Spatial Temporal Modeling for Applications in Population Sciences The University of Texas Health Science Center at Houston Houston Texas USA
Abstract
AbstractWe propose a novel nonparametric Bayesian item response theory model that estimates clusters at the question level, while simultaneously allowing for heterogeneity at the examinee level under each question cluster, characterized by a mixture of binomial distributions. The main contribution of this work is threefold. First, we present our new model and demonstrate that it is identifiable under a set of conditions. Second, we show that our model can correctly identify question‐level clusters asymptotically, and the parameters of interest that measure the proficiency of examinees in solving certain questions can be estimated at a rate (up to a log term). Third, we present a tractable sampling algorithm to obtain valid posterior samples from our proposed model. Compared to the existing methods, our model manages to reveal the multi‐dimensionality of the examinees' proficiency level in handling different types of questions parsimoniously by imposing a nested clustering structure. The proposed model is evaluated via a series of simulations as well as apply it to an English proficiency assessment data set. This data analysis example nicely illustrates how our model can be used by test makers to distinguish different types of students and aid in the design of future tests.
Subject
General Psychology,Arts and Humanities (miscellaneous),General Medicine,Statistics and Probability