Affiliation:
1. School of Biological Sciences Monash University Melbourne Victoria Australia
Abstract
AbstractClimate change is altering species ranges, and relative abundances within ranges, as populations become differentially adapted and vulnerable to the climates they face. Understanding present species ranges, whether species harbour and exchange adaptive variants, and how variants are distributed across landscapes undergoing rapid change, is therefore crucial to predicting responses to future climates and informing conservation strategies. Such insights are nonetheless lacking for most species of conservation concern. We assess genomic patterns of neutral variation, climate adaptation and climate vulnerability (offsets in predicted distributions of putatively adaptive variants across present and future landscapes) for sister foundation species, the marine tubeworms Galeolaria caespitosa and Galeolaria gemineoa, in a sentinel region for climate change impacts. We find that species are genetically isolated despite uncovering sympatry in their ranges, show parallel and nonparallel signals of thermal adaptation on spatial scales smaller than gene flow across their ranges, and are predicted to face different risks of maladaptation under future temperatures across their ranges. Our findings have implications for understanding local adaptation in the face of gene flow, and generate spatially explicit predictions for climatic disruption of adaptation and species distributions in coastal ecosystems that could guide experimental validation and conservation planning.
Funder
Australian Research Council
Holsworth Wildlife Research Endowment
Subject
Genetics,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献