The Bradyrhizobium japonicum fsrB gene is essential for utilization of structurally diverse ferric siderophores to fulfill its nutritional iron requirement

Author:

Ong Alasteir1,O'Brian Mark R.1ORCID

Affiliation:

1. Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences The University at Buffalo Buffalo New York USA

Abstract

AbstractIn Bradyrhizobium japonicum, iron uptake from ferric siderophores involves selective outer membrane proteins and non‐selective periplasmic and cytoplasmic membrane components that accommodate numerous structurally diverse siderophores. Free iron traverses the cytoplasmic membrane through the ferrous (Fe2+) transporter system FeoAB, but the other non‐selective components have not been described. Here, we identify fsrB as an iron‐regulated gene required for growth on iron chelates of catecholate‐ and hydroxymate‐type siderophores, but not on inorganic iron. Utilization of the non‐physiological iron chelator EDDHA as an iron source was also dependent on fsrB. Uptake activities of 55Fe3+ bound to ferrioxamine B, ferrichrome or enterobactin were severely diminished in the fsrB mutant compared with the wild type. Growth of the fsrB or feoB strains on ferrichrome were rescued with plasmid‐borne E. coli fhuCDB ferrichrome transport genes, suggesting that FsrB activity occurs in the periplasm rather than the cytoplasm. Whole cells of an fsrB mutant are defective in ferric reductase activity. Both whole cells and spheroplasts catalyzed the demetallation of ferric siderophores that were defective in an fsrB mutant. Collectively, the data support a model whereby FsrB is required for reduction of iron and its dissociation from the siderophore in the periplasm, followed by transport of the ferrous ion into the cytoplasm by FeoAB.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Molecular Biology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3