Experimentally monitored calcium dynamics at synaptic active zones during neurotransmitter release in neuron–muscle cell cultures

Author:

Sun Xiaoping1,Yazejian Bruce1,Peskoff Arthur1,Grinnell Alan D.1ORCID

Affiliation:

1. Department of Physiology David Geffen School of Medicine, UCLA Los Angeles CA USA

Abstract

AbstractCa2+‐dependent K+ (BK) channels at varicosities in Xenopus nerve–muscle cell cultures were used to quantify experimentally the instantaneous active zone [Ca2+]AZ resulting from different rates and durations of Ca2+ entry in the absence of extrinsic buffers and correlate this with neurotransmitter release. Ca2+ tail currents produce mean peak [Ca2+]AZ ~ 30 μM; with continued influx, [Ca2+]AZ reaches ~45–60 μM at different rates depending on Ca2+ driving force and duration of influx. Both IBK and release are dependent on Ca2+ microdomains composed of both N‐ and L‐type Ca channels. Domains collapse with a time constant of ~0.6 ms. We have constructed an active zone (AZ) model that approximately fits this data, and depends on incorporation of the high‐capacity, low‐affinity fixed buffer represented by phospholipid charges in the plasma membrane. Our observations suggest that in this preparation, (1) some BK channels, but few if any of the Ca2+ sensors that trigger release, are located within Ca2+ nanodomains while a large fraction of both are located far enough from Ca channels to be blockable by EGTA, (2) the IBK is more sensitive than the excitatory postsynaptic current (EPSC) to [Ca2+]AZ (K1/2–26 μM vs. ~36 μM [Ca2+]AZ); (3) with increasing [Ca2+]AZ, the IBK grows with a Hill coefficient of 2.5, the EPSC with a coefficient of 3.9; (4) release is dependent on the highest [Ca2+] achieved, independent of the time to reach it; (5) the varicosity synapses differ from mature frog nmjs in significant ways; and (6) BK channels are useful reporters of local [Ca2+]AZ.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3