Affiliation:
1. London Business School UK
2. London School of Economics UK
Abstract
AbstractWe develop a simple structural model to illustrate how penalized regressions generate Goodhart bias when training data are clean but covariates are manipulated at known cost by future agents. With quadratic (extremely steep) manipulation costs, bias is proportional to Ridge (Lasso) penalization. If costs depend on absolute or percentage manipulation, the following algorithm yields manipulation‐proof prediction: Within training data, evaluate candidate coefficients at their respective incentive‐compatible manipulation configuration. We derive analytical coefficient adjustments: slopes (intercept) shift downward if costs depend on percentage (absolute) manipulation. Statisticians ignoring manipulation costs select socially suboptimal penalization. Model averaging reduces these manipulation costs.
Subject
Economics and Econometrics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献