Invasive grass density negatively impacts chaparral seedling establishment

Author:

Phillips Michala L.1ORCID,Allen Edith B.1

Affiliation:

1. Department of Botany and Plant Sciences University of California Riverside 900 University Ave Riverside CA 92521 U.S.A.

Abstract

Type conversion from native shrubland to invasive annual grassland is on the rise due to global change factors such as prolonged drought and increasing fire frequency. Efforts to restore chaparral ecosystems are limited by current understanding of competitive interactions between shrub seedlings and invasive grasses as well as soil moisture requirements of chaparral seedlings. We set up a restoration experiment where we out‐planted Adenostoma fasciculatum seedlings, manipulated invasive grass density, monitored soil moisture at two depths, and tracked seedling survival and biomass. We found that higher invasive grass cover was associated with higher rates of seedling mortality but found no difference in biomass per surviving plant. Soil moisture was higher at 15 cm under the 100% weeded treatment than the 50% weeded and control treatments during January. Lower invasive cover resulted in higher richness of annual native plant species, as plots with 100% invasive removal had higher richness than 50% removal and unplanted control plots. Future restoration efforts in the chaparral will likely be more successful in increasing initial seedling establishment if invasive grass removal is included.

Funder

National Aeronautics and Space Administration

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3