Quantitation of the physicochemical properties of myelin using Nile Red fluorescence spectroscopy

Author:

Teo W.1,Morgan M. L.1,Stys P. K.1ORCID

Affiliation:

1. Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine University of Calgary Calgary Alberta Canada

Abstract

AbstractMyelin is a vital structure that is key to rapid saltatory conduction in the central and peripheral nervous systems. Much work has been done over the decades examining the biochemical composition and morphology of myelin at the light and electron microscopic levels. Here we report a method to study myelin based on the fluorescent probe Nile Red. This lipophilic dye readily partitions into live and chemicallyfixed myelin producing bright, well‐resolved images of the sheath. Using spectral confocal microscopy, a complete emission spectrum of Nile Red fluorescence can be acquired for each pixel in an image. The solvatochromic properties of Nile Red cause its emission spectrum to change depending on the polarity of its local environment. Therefore, measuring spectral shifts can report subtle changes in the physicochemical properties of myelin. We show differences in myelin polarity in central versus peripheral nervous system and in different regions of central nervous system white matter of the mouse brain, together with developmental and sex variations. This technique is also well suited for measuring subtle changes in myelin properties in live ex vivo white matter specimens. We also demonstrate how light deprivation induces a myelin polarity change in adult mouse optic nerve underscoring a continuing myelin plasticity in response to axonal activity well into adulthood. The Nile Red spectroscopic method allows measurement of subtle physicochemical changes in myelin that can importantly influence its electrical properties and by extension, conduction velocities in axons.image

Funder

Multiple Sclerosis Society of Canada

Canada Foundation for Innovation

Canadian Institutes of Health Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3