Stability of whey protein bioactive peptide‐stabilised nanoemulsions: effect of pH, ions, heating and freeze–thawing

Author:

Adjonu Randy12ORCID,Doran Gregory23ORCID,Torley Peter4ORCID,Agboola Samson2

Affiliation:

1. School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW 2678 Australia

2. The Gulbali Institute Charles Sturt University Wagga Wagga NSW 2678 Australia

3. School of Agricultural, Environmental and Veterinary Sciences Charles Sturt University Wagga Wagga NSW 2678 Australia

4. School of Science RMIT University Bundoora VIC 3083 Australia

Abstract

SummaryWhey protein hydrolysates are important food emulsifiers and bioactive ingredients. This study investigated the stability of whey protein isolate (WPI) bioactive peptide fraction nanoemulsions under representative food processing and storage conditions: pH (3–9), ion concentration (Na+, 0–200 mm and Ca2+, 0–15 mm), thermal treatment (30–90 °C) and freeze–thawing. Bioactive peptide fractions, UC–10 and UP–10, were obtained by ultrafiltration of chymotrypsin or pepsin WPI hydrolysates, respectively. The nanoemulsions produced with these fractions had droplet diameters of 177 ± 3.5 nm (UC–10) and 154 ± 1.6 nm (UP–10). Nanoemulsions destabilised at pH 3–5, around the isoelectric point of WPI proteins but were stable at higher pH values, 6–9. Nanoemulsion instability escalated above critical Na+ (25 mm) and Ca2+ (2.5 mm) concentrations, but Ca2+ accelerated droplet aggregation more strongly than Na+. Furthermore, nanoemulsions were moderately stable to heating and freeze–thawing. Overall, both WPI bioactive peptide‐stabilised nanoemulsions showed consistent stability to the processing conditions. This study expands on designing, producing and utilising nanoemulsions based on WPI bioactive peptides.

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3