A multilabel classification approach to identify hurricane‐induced infrastructure disruptions using social media data
Author:
Affiliation:
1. Department of Civil, Environmental, and Construction Engineering University of Central Florida Orlando FL USA
2. Department of Earth & Environment and Department of Economics Florida International University Miami FL USA
Funder
U.S. National Science Foundation
Publisher
Wiley
Subject
Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1111/mice.12573
Reference78 articles.
1. Enhanced probabilistic neural network with local decision circles: A robust classifier
2. An overview of smartphone technology for citizen-centered, real-time and scalable civil infrastructure monitoring
3. A Methodology to Account for One-Way Infrastructure Interdependency in Preservation Activity Scheduling
4. Emergence of Scaling in Random Networks
5. A review of machine learning algorithms for identification and classification of non‐functional requirements;Binkhonain M.;Expert Systems with Applications,2019
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Natural language instructions for intuitive human interaction with robotic assistants in field construction work;Automation in Construction;2024-05
2. A machine learning tool for collecting and analyzing subjective road safety data from Twitter;Expert Systems with Applications;2024-04
3. A critical review of digital technology innovations for early warning of water-related disease outbreaks associated with climatic hazards;International Journal of Disaster Risk Reduction;2024-01
4. Technological forecasting based on estimation of word embedding matrix using LSTM networks;Technological Forecasting and Social Change;2023-06
5. Searching for signal and borrowing wi-fi: Understanding disaster-related adaptations to telecommunications disruptions through social media;International Journal of Disaster Risk Reduction;2023-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3