Chondrule sizes within the CM carbonaceous chondrites and measurement methodologies

Author:

Floyd C. J.1ORCID,Benito S.2,Martin P.‐E.1,Jenkins L. E.1,Dunham E.3ORCID,Daly L.145ORCID,Lee M. R.1ORCID

Affiliation:

1. School of Geographical and Earth Sciences University of Glasgow Glasgow UK

2. Ruhr‐Universität Bochum Chair of Materials Technology Bochum Germany

3. Department of Earth, Planetary and Space Sciences University of California, Los Angeles Los Angeles California USA

4. Australian Centre for Microscopy and Microanalysis The University of Sydney Sydney New South Wales Australia

5. Department of Materials University of Oxford Oxford UK

Abstract

AbstractThe sizes of chondrules are a valuable tool for understanding relationships between meteorite groups and the affinity of ungrouped chondrites, documenting temporal/spatial variability in the solar nebula, and exploring the effects of parent body processing. Many of the recently reported sizes of chondrules within the CM carbonaceous chondrites differ significantly from the established literature average and are more closely comparable to those of chondrules within CO chondrites. Here, we report an updated analysis of chondrule dimensions within the CM group based on data from 1937 chondrules, obtained across a suite of CM lithologies ranging from petrologic subtypes CM2.2 to CM2.7. Our revised average CM chondrule size is 194 μm. Among the samples examined, a relationship was observed between petrologic subtype and chondrule size such that chondrule long‐axis lengths are greater in the more highly aqueously altered lithologies. These findings suggest a greater similarity between the CM and CO chondrites than previously thought and support arguments for a genetic link between the two groups (i.e., the CM‐CO clan). Using the 2‐D and 3‐D data gathered, we also apply numerous stereological corrections to examine their usefulness in correcting 2‐D chondrule measurements within the CM chondrites. Alongside this analysis, we present the details of a standardized methodology for 2‐D chondrule size measurement to facilitate more reliable inter‐study comparisons.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3