Cyclic adaptive cohesive zone model to simulate ductile crack propagation in steel structures due to ultra‐low cycle fatigue

Author:

Ziccarelli Andy1,Kanvinde Amit2,Deierlein Gregory3

Affiliation:

1. Department of Civil, Construction and Environmental Engineering North Carolina State University Raleigh North Carolina USA

2. Department of Civil and Environmental Engineering University of California, Davis Davis California USA

3. Department of Civil and Environmental Engineering Stanford University Stanford California USA

Abstract

AbstractMicromechanics‐based continuum damage criteria have previously been developed to simulate the initiation of ductile fracture in structural steels under conditions with large‐scale plasticity where conventional fracture mechanics indices are invalid. Such models have been combined with methods to simulate ductile crack growth for monotonic loading. In this study, a micromechanics‐based adaptive cohesive zone model for simulating ductile crack propagation under monotonic loading is extended to handle cyclic loading. The proposed model adaptively modifies the cohesive traction–separation relationship for crack opening and closure, as the loading reverses between tension and compression. The approach is implemented into the finite element analysis platform WARP3D, and results of simulations that use the model are compared with data from coupon‐scale tests. The results demonstrate that the proposed model can accurately simulate the effect of crack propagation on specimen response, as well as other key aspects of observed behavior, including crack face closure and crack tunneling.

Funder

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3