Wing lengths of three Arctic butterfly species decrease as summers warm in Alaska

Author:

Daly Kathryn M.12,Sikes Derek S.12ORCID,Mann Daniel H.1,Breed Greg A.13ORCID

Affiliation:

1. Department of Biology and Wildlife & University of Alaska Museum, University of Alaska Fairbanks AK USA

2. Institute of Arctic Biology, University of Alaska, Fairbanks Fairbanks AK USA

3. Department of Biology and Wildlife & Institute of Arctic Biology, University of Alaska, Fairbanks Fairbanks AK US

Abstract

Climate warming can cause arthropods to express plastic and/or evolved changes in morphology. Previous studies have demonstrated that body sizes of Arctic butterflies are influenced by the temperatures experienced as larvae. To investigate whether this was occurring among Alaskan butterflies, we analyzed temporal trends in the wing sizes of three Holarctic species, Colias hecla, Boloria chariclea and Boloria freija, using museum specimens collected in Arctic tundra regions of Alaska between 1971 and 1995. Wing length was compared to accumulated growing degree days (GDD) during both the spring of the year collected and the previous year's summer during the normal period of larval development. We used mixed‐effects models to test if spring and summer temperatures affected adult morphology. Results show that for every 1°C increase in average seasonal temperature, wingspans decreased between 0.7 and 5 mm, with B. freija the most strongly affected. Our results suggest that the morphological sensitivity of Arctic butterflies to warming is the outcome of interactions between life‐history traits and regional climate, with all species sensitive to warming the summer before the flight year as well as warming the spring of the flight year. Boloria freija, which overwinters as late instar larvae that do not feed before pupation the following spring, was particularly strongly affected by summer warming.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3