Plant functional group interactions intensify with warming in alpine grasslands

Author:

Jaroszynska Francesca1ORCID,Lie Olsen Siri23ORCID,Gya Ragnhild1ORCID,Klanderud Kari3ORCID,Telford Richard1ORCID,Vandvik Vigdis1ORCID

Affiliation:

1. Department of Biological Sciences and Bjerknes Centre for Climate Research, University of Bergen Bergen Norway

2. Norwegian Institute for Nature Research Oslo Norway

3. Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences Ås Norway

Abstract

Plant–plant interactions regulate plant community structure and function. Shifts in these interactions due to global climate change, mediated through disproportional increases of certain species or functional groups, may strongly affect plant community properties. Still, we lack knowledge of community‐level effects of climate‐driven changes in biotic interactions. We examined plant community interactions by experimentally removing a dominant functional group, graminoids, in semi‐natural grasslands in Southern Norway. To test whether the effect of graminoid removal varied with climate, the experiment was replicated across broad‐scale temperature and precipitation gradients. To quantify community‐level interactions across sites, we tested for changes in the remaining vascular community (i.e. forbs) cover, richness, evenness, and functional traits reflecting leaf‐economic investment and plant size over five years. The effect of graminoid removal on forb community structure and functioning varied over time, and along the climate gradients. Forb cover increased in response to graminoid removal, especially at warmer sites. Species richness increased following removal irrespective of climate, whilst evenness increased under warmer and wetter conditions irrespective of removal. No climate or removal effect was found for species turnover. Functional trait responses varied along the precipitation gradient – compared to controls, forb mean SLA decreased in drier conditions after graminoid removal. Leaf thickness increased under cooler and drier conditions irrespective of removal. These community structure alterations demonstrate stronger competitive interactions between forbs and graminoids under warmer conditions, whilst functional trait responses indicate a facilitative effect of graminoids under drier conditions. This indicates that both competition and facilitation regulate plant communities, suggesting complexity when scaling from populations to communities. Finally, both temperature and precipitation determine the direction and intensity of biotic interactions, with ecosystem‐wide implications for forb persistence and ecosystem functioning under future climates. Further work is needed to generalise the role of changing interactions in mediating community responses to climate change.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3