Responses of the desert green algae, Chlorella sp. to drought stress

Author:

Wang Bo12ORCID,Li Xiaoyan3,Wang Gaohong3

Affiliation:

1. Jiangxi Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin Jiujiang University Jiujiang China

2. College of Resource & Environment Jiujiang University Jiujiang China

3. Key Laboratory of Algal Biology, Institute of Hydrobiology Chinese Academy of Sciences Wuhan China

Abstract

AbstractDesert algae are important components of the desert soil crust and play an essential role in desert soil ecosystem development. Owing to their special habitat, desert algae are often exposed to harsh environments, among which drought represents the most common stress. Green algae are considered to have drought tolerance potential; however, only a few studies have investigated this. In this study, we selected the green alga Chlorella sp., which was isolated from desert soil, and studied its physiological response to polyethylene glycol (PEG) 6000‐induced drought stress. The results showed that drought stress can affect the photosynthetic efficiency of Chlorella sp., reduce its water retention ability, and destroy its ultrastructure. However, Chlorella sp. can cope with drought stress through a series of physiological regulatory strategies. Protective strategies include quick recovery of photosynthetic efficiency and increased chlorophyll content. In addition, induced synthesis of soluble proteins, lipids, and extracellular polysaccharide (EPS), and accumulation of osmotic regulatory substances, such as sucrose and trehalose, also contribute to improving drought tolerance in Chlorella sp. This study provides insights into the physiological responses of Chlorella sp. to drought stress, which may be valuable for understanding the underlying drought adaptation mechanisms of desert green algae.

Funder

Education Department of Jiangxi Province

Chinese Academy of Sciences

Publisher

Wiley

Subject

Plant Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3