Enhancement of photoluminescence intensity of sintered CaAlSiN3:Eu2+ red phosphor‐bismuthate glass composites

Author:

Shyu Jiin‐Jyh1ORCID,Wu Chun‐Han1

Affiliation:

1. Department of Mechanical and Materials Engineering Tatung University Taipei Taiwan

Abstract

AbstractWavelength converters in white light‐emitting diodes are usually made by sintering of phosphor‐glass powder compacts. An issue is that the sintering process usually results in the reduction of phosphor amount. In the present study, composites containing CaAlSiN3:Eu2+ red phosphor and Bi2O3‐B2O3‐ZnO‐Sb2O5 glass were fabricated by sintering method. Influences of CaAlSiN3:Eu2+ phosphor content (10 vol%–30 vol%) and sintering temperature (410–430°C) on the residual amount of the phosphor phase and the resulting luminescence intensity of the composites were investigated. The change of CaAlSiN3:Eu2+ content due to sintering was analyzed by X‐ray diffraction. The interdiffusion between the CaAlSiN3:Eu2+ and glass matrix was examine by scanning electron microscope equipped with energy dispersive X‐ray spectrometry. This paper focuses on the change of luminescence intensity after sintering. It was found that although the content of phosphor CaAlSiN3:Eu2+ reduces after sintering; the luminescent intensity of the composites anomalously increases. The optimum luminescence intensity is 14% higher than that of the as‐mixed, unfired powder. It is proposed that the incorporation of Bi3+ ions from the glass matrix into the phosphor CaAlSiN3:Eu2+ during sintering improves the luminescence ability of the phosphor particles.

Funder

Tatung University

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3