Evaluation of fracture behavior of lightweight magnesia‐based refractories via wedge splitting test along with acoustic emission detection

Author:

Yan Junjie1,Yan Wen12ORCID,Dai Yajie12ORCID,Li Guangqiang1,Wang Xiao3,Yin Yucheng1ORCID

Affiliation:

1. The State Key Laboratory of Refractories and Metallurgy Wuhan University of Science and Technology Wuhan China

2. National‐Provincial Joint Engineering Research Center of high Temperature Materials and Lining Technology Wuhan University of Science and Technology Wuhan China

3. School of Chemical Engineering Qinghai University Xining China

Abstract

AbstractThe effect of spinel powder on the fracture behavior and mechanical properties of lightweight magnesia‐based refractories containing microporous magnesia aggregates with high apparent porosity (37.4%) were investigated by the wedge splitting test (WST) with the digital image correlation and acoustic emission. With the addition of spinel powder, lightweight magnesia spinel refractories showed a higher cold compressive strength compared with lightweight pure magnesia refractories. From the WST, the addition of spinel powder increased the specific fracture energy and characteristic length of lightweight magnesia spinel refractories, which improved the crack propagation resistance. The increased tortuosity of main crack and a higher ratio of crack propagation along the aggregates/matrix interface were main reasons for reducing the brittleness of lightweight magnesia spinel refractories. Besides, acoustic emission (AE) signal activity indicated that the propagation of pregenerated micro‐cracks by the thermal mismatch and the development of fracture progress zone were primary ways to consume energy in lightweight magnesia spinel refractories. The reduced proportion of crack propagation within aggregates was also detected by the peak frequency of AE signals in lightweight magnesia spinel refractories. For microporous magnesia aggregates with high apparent porosity (37.4%), lightweight magnesia spinel refractories also showed reduced brittleness fracture behavior than lightweight pure magnesia refractories.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3