Microstructure evolution and performance of B4C–NdB6 composites fabricated by in situ hot pressing

Author:

Wang Shuai1ORCID,Li Huaiqian23,Xing Pengfei1,Zhuang Yanxin23ORCID

Affiliation:

1. School of Metallurgy Northeastern University Shenyang Liaoning P. R. China

2. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education) Northeastern University Shenyang P. R. China

3. School of Material Science and Engineering Northeastern University Shenyang P. R. China

Abstract

AbstractB4C–NdB6 composites were fabricated by in situ hot pressing at different temperatures (1950–2150°C) with B4C and Nd2O3 (2–4 wt%) as raw materials. The microstructure evolution of the composites with sintering temperature and Nd2O3 content was studied in detail, and the influence of pressure on the sintering of B4C with different contents of Nd2O3 was also investigated. The performance of the fabricated composites was researched and the toughening mechanism was discussed. The results indicate that Nd2O3 can react with B4C to form the thin‐sheet intermediate products (Nd(BO2)3, Nd2CO5) first, which then transform to band‐shaped NdB6. Pressure can reduce the distance of B4C and Nd2O3, accelerating the mass transfer and contributing to the formation of NdB6. NdB6 and intermediate products are first in agglomerate structure at 1950°C, and then the agglomerates are broken to form dispersive micron and submicron NdB6 at 2000°C by the synergistic function of pressure, diffusion at high temperature, and liquid phase sintering. NdB6 can enhance the densification owing to the bonding function. Excessive Nd2O3 content leads to residual pores, and excessive temperature (2150°C) results in the coarsening of phases. The coexistence of transgranular and intergranular fracture of NdB6 promote the fracture toughness.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Studies on synthesis, densification, and characterization of neodymium hexaboride;International Journal of Applied Ceramic Technology;2024-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3