Size‐controlled synthesis of mesoporous silica nanoparticles using rice husk by microwave‐assisted sol–gel method

Author:

Priyan Selvaraj Ranjith1,Kumar Govindan Suresh1ORCID,Surendhiran Srinivasan2,Shkir Mohd.3ORCID

Affiliation:

1. Department of Physics K.S. Rangasamy College of Arts and Science (Autonomous) Tiruchengode Tamil Nadu India

2. Centre for Nanoscience and Technology K.S. Rangasamy College of Technology Tiruchengode Tamil Nadu India

3. Department of Physics College of Science King Khalid University Abha Saudi Arabia

Abstract

AbstractMesoporous silica nanoparticles with distinct characteristics like particle size, tunable pores, and high surface area have received much interest for environmental remediation, energy conversion, and biological applications. In this work, we synthesized spherical silica nanoparticles with tunable particle size and mesoporous properties using a low‐cost silica source (rice husk) and polyethylene glycol (PEG) via microwave‐assisted sol–gel synthesis. The formation of an amorphous silica structure was found using XRD and FTIR analysis. FESEM analysis showed that altering the PEG concentration from .01 to .005 M produced spherical silica nanoparticles with 100–500 nm in size. Nitrogen adsorption–desorption demonstrated that silica nanoparticles obtained with .005, .007, and .01 M of PEG had unique pore sizes and distributions, with specific surface areas of 51.475, 62.367, and 84.251 m2/g, respectively. These results might be due to PEG molecules’ capping effect, which acts as a soft template to regulate particle size, pore size, and dispersion by interacting with sodium silicate precursor. Hence, this approach can be a facile and cost‐effective method to prepare mesoporous silica nanoparticles with controllable nanoscale characteristics for suitable applications.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3