In situ growth of SiC wires on CVI densification of SiC foam

Author:

Sreeja Remani1ORCID,Shyin Palani Prabhakaran1,Suchithra Cheriyan2,Devapal Deepa1,Prabhakaran Payyadakam Veetil1

Affiliation:

1. Ceramic Matrix Products Division, Analytical Spectroscopy & Ceramics Group PCM Entity Vikram Sarabhai Space Centre Thiruvananthapuram India

2. Analytical and Spectroscopy Division, Analytical Spectroscopy & Ceramics Group PCM Entity Vikram Sarabhai Space Centre Thiruvananthapuram India

Abstract

AbstractSilicon carbide (SiC) foam prepared by polymer infiltration and pyrolysis (PIP) process was further densified with β‐SiC by chemical vapor infiltration (CVI) technique. Scanning electron microscopy and high‐resolution transmission electron microscopy images confirmed the presence of highly entangled and branched in situ grown SiC wires of uniform diameter (∼500 nm) over the struts of open‐cell SiC foam. A uniform rate increase in diameter from nanometer to micron range (∼11 μm) was observed with an increase in the CVI reaction period. X‐ray diffraction results showed the formation of highly crystalline β‐SiC structure along the <111> direction with stacking faults. The formation of SiC wires was explained by the vapor–liquid–solid mechanism and evenness of the surface and uniform growth rate of SiC confirmed the homogeneous concentration of gaseous species during CVI reaction. The compressive strength increased with relative density, with maximum values of 5.5 ± 1.26 MPa for ultimate SiC foam (ρ = 400 kg/m3) prepared by hybrid PIP/CVI technique. The thermo‐oxidative stability of the resultant foam was evaluated up to 1650°C under air and shows excellent thermal stability compared to SiC foam prepared by PIP route. The densified SiC foam can find potential applications in the field of hot gas filters, catalyst supports, microwave absorption properties, and heat insulation for high‐temperature applications.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3