Sonocatalysis and Photocatalysis in Ba0.5Sr0.5TiO3 ceramics

Author:

Tiwari Saurabh1,Gaur Akshay1,Vaish Rahul1ORCID

Affiliation:

1. School of Mechanical and Materials Engineering Indian Institute of Technology Mandi Mandi Himachal Pradesh India

Abstract

AbstractThe photocatalytic, sonocatalytic, and sono‐photocatalytic performances of Ba0.5Sr0.5TiO3 (BST) ceramic (synthesized through solid‐state reaction route) were investigated for the degradation of an organic dye named methylene blue (MB). The as‐prepared BST ceramic powder was characterized using a scanning electron microscope, X‐ray diffraction, X‐ray photoelectron, and Raman spectroscopy techniques. The optical energy band gap of BST ceramic was found to be ∼3.17 eV. BST has shown significant catalytic activity following sonocatalysis and photocatalysis processes, i.e, ∼48% and ∼65% in 3 h, respectively. The synergic effect of the sonocatalysis and photocatalysis processes had shown an excellent degradation of 81% in 3 h. To determine the reactive species responsible for the degradation of MB dye, a scavenger test was also performed using isopropyl alcohol (IPA), ethylenediaminetetraacetic acid (EDTA), and benzoquinone (BQ) scavengers. The degree of MB dye degradation was quantified by a phytotoxicity test on “Vigna radiata” seeds. Furthermore, the potentiality of BST ceramic was explored for water cleaning applications while irradiating it to solar radiation in real‐time conditions.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3