Phase composition, crystal structure, and microwave dielectric properties of LiIn1‐xAlxO2 ceramics

Author:

Chen Junqi1ORCID,Wang Zhaohui23,Qing Peili23,Chen Jinwu1

Affiliation:

1. School of Mechanical Engineering Guilin University of Aerospace Technology Guilin P. R. China

2. Guangxi Key Laboratory of Optical and Electronic Materials and Devices College of Material Science and Engineering Guilin University of Technology Guilin P. R. China

3. Key Laboratory of Nonferrous Materials and New Processing Technology Ministry of Education Guilin University of Technology Guilin P. R. China

Abstract

AbstractA series of LiIn1‐xAlxO2 (x =0.05, 0.10, 0.15, 0.20, 0.25) microwave dielectric ceramics with low permittivity were synthesized via a solid‐state reaction method. XRD, Raman spectra, and SEM analysis reveal that a single LiInO2 tetragonal structure phase could be obtained at the x < 0.10, and with the x increased further to 0.15–0.25, the diffraction peaks of the secondary phase LiAlO2 were detected. In the LiIn1‐xAlxO2 ceramics, the τf was closely related to the εr, and the relative density, microstructure, and microwave dielectric properties were effectively improved by the Al3+ substitution for In3+. Bond valence theory analysis demonstrates that the Al3+ entered the In3+ site exhibits a strength rattling effect, which is beneficial to the increase of εr. While Al3+ substitution for In3+ simultaneously lowers the average ionic polarizability, resulting in a decrease in εr. A near‐zero τf (0.74 ppm/°C) combined with εr approximately 12.83, Q × f = 58 200 GHz, was obtained in LiIn0.85Al0.15O2 ceramic sintered at 970°C.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3