Porous ceramics derived from steel slag/coal gangue mixtures using cigarette butts as the pore‐forming agent

Author:

Liu Wenjie1ORCID,Wang Yang1,Li Jingtao1,Li Baorang1

Affiliation:

1. North China Electric Power University Beijing China

Abstract

AbstractFabrication of ceramic materials with interconnected pores is necessary to improve thermal energy storage efficiency in high‐temperature infiltration technology. In the present study, industrial wastes such as coal gangue, steel slag, etc., were selected as the raw materials to prepare ceramics with interconnected pores. By adopting 50% cigarette butts as the pore‐forming agent, steel slag–coal gangue mixtures with a mass ratio of steel slag to coal gangue of 1:9 were sintered at 1100°C, and ceramics with interconnected elongated pores were prepared successfully. The highest apparent porosity and lowest volume density of the as‐prepared ceramics were ca. 73% and .74 g/cm3, respectively. Further measurements of the thermophysical properties indicated that no obvious mass loss was observed in the temperature range from ambient temperature to 800°C. The maximum values of specific heat and thermal conductivity were 1.38 J/(g K) and 1.661 W/(m K), respectively, and meanwhile the minimum compressive strength could exceed 3.5 MPa. These research results implied that the as‐prepared steel slag–coal gangue ceramics can provide long‐term service and offer excellent thermal stability over a wide temperature range. Therefore, they should have potential applications in high‐temperature infiltration technology.

Publisher

Wiley

Subject

Materials Chemistry,Marketing,Condensed Matter Physics,Ceramics and Composites

Reference58 articles.

1. Porous Cordierite Ceramic with Pore Formers of a Different Nature

2. Study on preparation of alumina porous ceramics by organic foam impregnation method;Kang Y;Foshan Ceram,2016

3. Processing, microstructure and elastic properties of mullite-based ceramic foams prepared by direct foaming with wheat flour

4. Progress in research of preparation technologies of porous ceramics;Deng X;Int Ceram,2015

5. Preparation and performance of lightweight porous ceramics using metallurgical steel slag

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3