Modeling mammal response to fire based on species’ traits

Author:

Pocknee Christopher A.1ORCID,Legge Sarah M.23,McDonald Jane4,Fisher Diana O.1

Affiliation:

1. School of Biological Sciences University of Queensland St Lucia Queensland Australia

2. Centre for Biodiversity and Conservation Science University of Queensland St Lucia Queensland Australia

3. Fenner School of Environment & Society The Australian National University Canberra Australian Capital Territory Australia

4. Institute for Future Environments, Centre for the Environment Queensland University of Technology Brisbane Queensland Australia

Abstract

AbstractFire has shaped ecological communities worldwide for millennia, but impacts of fire on individual species are often poorly understood. We performed a meta‐analysis to predict which traits, habitat, or study variables and fire characteristics affect how mammal species respond to fire. We modeled effect sizes of measures of population abundance or occupancy as a function of various combinations of these traits and variables with phylogenetic least squares regression. Nine of 115 modeled species (7.83%) returned statistically significant effect sizes, suggesting most mammals are resilient to fire. The top‐ranked model predicted a negative impact of fire on species with lower reproductive rates, regardless of fire type (estimate = –0.68), a positive impact of burrowing in prescribed fires (estimate = 1.46) but not wildfires, and a positive impact of average fire return interval for wildfires (estimate = 0.93) but not prescribed fires. If a species’ International Union for Conservation of Nature Red List assessment includes fire as a known or possible threat, the species was predicted to respond negatively to wildfire relative to prescribed fire (estimate = –2.84). These findings provide evidence of experts’ abilities to predict whether fire is a threat to a mammal species and the ability of managers to meet the needs of fire‐threatened species through prescribed fire. Where empirical data are lacking, our methods provide a basis for predicting mammal responses to fire and thus can guide conservation actions or interventions in species or communities.

Funder

Australian Government

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3