Affiliation:
1. K. Lisa Yang Center for Conservation Bioacoustics, Cornell Laboratory of Ornithology Cornell University Ithaca New York USA
2. Faculty of Sustainable Agriculture Universiti Malaysia Sabah Kota Kinabalu Malaysia
3. Cornell Statistical Consulting Unit Cornell University Ithaca New York USA
Abstract
AbstractUnderstanding niche partitioning of closely related sympatric species is a fundamental goal in ecology. Acoustic communication space can be considered a resource, and the acoustic niche hypothesis posits that competition between species may lead to partitioning of communication space. Here, we compare the calling behavior of two sympatric Bornean hornbill species—the rhinoceros hornbill (Buceros rhinoceros) and the helmeted hornbill (Rhinoplax vigil)—to test for evidence of acoustic niche partitioning. Both hornbill species emit calls heard over many kilometers and have similar habitat preferences which is predicted to result in interspecific competition. We collected acoustic data on sympatric populations of both hornbill species using 10 autonomous recording units in Danum Valley Conservation Area, Sabah, Malaysia. We found that there was substantial spectral overlap between the calls of the two species, indicating the potential for competition for acoustic space. To test for evidence of acoustic niche partitioning, we investigated spatial and temporal patterns of calling in each species. Both hornbills were strictly diurnal and called throughout the day, and we were equally likely to detect both species at each of our recorders. We did not find evidence of temporal acoustic avoidance at a relatively coarse timescale when we divided our dataset into 1 h bins, but we did find evidence of temporal acoustic avoidance at a finer timescale when we used null models to compare the observed duration of overlapping calls to the expected amount of overlap due to chance.Abstract in Malay is available with online material.
Subject
Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献