Advances in the study of microbiota in reproductive biology: A short review of recent research, following Leclaire et al. (2022)

Author:

Turjeman Sondra1ORCID

Affiliation:

1. Azrieli Faculty of Medicine Bar‐Ilan University Safed Israel

Abstract

Research on microbiota dynamics in humans (Gilbert et al., 2018), model organisms (Douglas, 2019), and free‐ranging, wild animals (Grond et al., 2018) has taken off in the past decades, and even in nonmodel organisms, research has already shifted from initial characterization studies to those examining associations with behaviour and fitness (Bodawatta et al., 2022; Corl et al., 2020; Risely et al., 2018; Turjeman et al., 2020). The microbiota is known to change through pregnancy and parturition (Koren et al., 2012), and there is also evidence in humans that infertility may be associated with microbiota composition (Silva & Giacobini, 2019), but how the microbiota is related to reproductive fitness in free‐ranging species is largely understudied or primarily focused on pathogen transmission (sexually transmitted infection) (Lombardo, 1998; Sheldon, 1993). In a From the Cover article in this issue of Molecular Ecology, Leclaire et al. (2022) begin to tease apart the relationship between the microbiota and reproductive fitness using the black‐legged kittiwake (Rissa tridactyla) as their study species. Following characterization of the microbiota in multiple body sites of breeders and nonbreeders, they discovered that breeding and nonbreeding females had distinct microbiota, that higher performing female breeders had lower abundances of potentially pathogenic taxa, and that feathers of these birds were characterized by reduced microbiota diversity compared to low‐performance breeders. Leclaire and her colleagues provide some of the first evidence of body‐wide differences in microbiota composition in relation to breeding status. Their research further supports the relationship between the microbiota and host fitness, and additional studies focusing on this topic can continue to unravel intricacies in host‐microbiota‐reproductive strategy evolution (Comizzoli et al., 2021; Rowe et al., 2020). Here, I review the results of Leclaire et al. (2022) and provide a wider context for their research by reviewing other studies in the field, focusing on avian species.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial 2024;Molecular Ecology;2023-12-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3