Selective brain perfusion improves the neurological outcomes after extracorporeal cardiopulmonary resuscitation in a rat model

Author:

Chang Ru‐Wen1,Hsu Man‐Chen2,Lee Tzong‐Shyuan2,Chen Yih‐Sharng1ORCID,Wang Chih‐Hsien1ORCID

Affiliation:

1. Cardiovascular Surgery, Department of Surgery National Taiwan University Hospital and College of Medicine Taipei Taiwan

2. Graduate Institute and Department of Physiology, College of Medicine National Taiwan University Taipei Taiwan

Abstract

AbstractBackgroundThe major concern in patients who have suffered from cardiac arrest (CA) and undergone successful extracorporeal cardiopulmonary resuscitation (E‐CPR) is poor neurological outcomes. In this study, we aimed to introduce a rat model of selective brain perfusion (SBP) during E‐CPR to improve the neurological outcome after CA.MethodsThe rats underwent 7 min of untreated asphyxial CA and then were resuscitated with E‐CPR for 30 min. The right external jugular vein and right femoral artery were separately cannulated to the E‐CPR outflow and inflow. The right common carotid artery was cannulated from the proximal to the distal side for SBP. Subsequently, rats were removed from E‐CPR, wounds were closed, and 90 min of intensive care were provided. Neurological deficit scores were tested after 4 h of recovery when the rats were mechanical ventilation‐free. S100 calcium‐binding protein B (S100B) and glial fibrillary acidic protein (GFAP) were detected through immunohistochemistry (IHC) of brain tissue.ResultsThe rats that received SBP while resuscitated by E‐CPR showed markedly better neurological performances after 4‐h recovery than those resuscitated by E‐CPR only. The IHC staining of GFAP and S100B in the hippocampus was low in the rats receiving SBP during E‐CPR, but only GFAP showed significant differences.ConclusionsWe successfully developed a novel and reproducible rat model of SBP while resuscitated by E‐CPR to ameliorate the neurological performances after CA. This achievement might have opportunities for studying how to improve the neurological outcome in the clinical condition.

Funder

National Taiwan University Hospital

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3