Leveraging museum specimens, genomics and legacy datasets to unravel the phylogeny and biogeography of cryptin wasps (Hymenoptera, Ichneumonidae, Cryptini)

Author:

Santos Bernardo F.1ORCID,Brady Seán G.2ORCID

Affiliation:

1. Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science Center for Integrative Biodiversity Discovery Berlin Germany

2. Department of Entomology National Museum of Natural History Washington DC USA

Abstract

AbstractModern genomic techniques have enabled the generation of phylogenetic datasets of unprecedented scale. However, there are also troves of molecular data accumulated from past studies using Sanger sequencing, often at fine taxonomic scales. Combining both sources of data is an obviously appealing possibility, but it can also lead to inconsistency due to high levels of missing data, disparities in the scale of Sanger versus genomic datasets, and little overlap in sequences across terminals. To provide an empirical investigation of the potential of such ‘hybrid’ datasets, we combined data from ultraconserved elements (UCEs) for 183 species of Cryptini (Ichneumonidae, Hymenoptera) with a previously existing dataset of 7 loci and morphological data including 308 species plus outgroup taxa. Bioinformatics pipelines allowed recovery of ‘legacy’ markers from the bycatch of UCE sequencing, reducing the problem of limited character overlap. The resulting tree combining Sanger and UCE data is highly supported and includes dense taxon sampling of the group, allowing for a better understanding of the global radiation of Cryptini. The Neotropical region had the highest phylogenetic diversity but the lowest level of phylogenetic dispersion when corrected for standardized effect size, while the Oriental fauna showed the highest level of phylogenetic dispersion. Our results highlight the potential of hybrid datasets to produce a more complete picture of the Tree of Life combining affordability, robust support and deep taxonomic sampling.

Funder

Division of Environmental Biology

Smithsonian Institution

Publisher

Wiley

Subject

Genetics,Molecular Biology,Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3