Does Leakage of the Blood–Brain Barrier Mediate Epileptogenesis?

Author:

Janigro Damir

Abstract

Blood-Brain Barrier Leakage May Lead to Progression of Temporal Lobe Epilepsy. van Vliet EA, da Costa Araujo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Brain 2007;130(Pt 2):521–534. Leakage of the blood–brain barrier (BBB) is associated with various neurological disorders, including temporal lobe epilepsy (TLE). However, it is not known whether alterations of the BBB occur during epileptogenesis and whether this can affect progression of epilepsy. We used both human and rat epileptic brain tissue and determined BBB permeability using various tracers and albumin immunocytochemistry. In addition, we studied the possible consequences of BBB opening in the rat for the subsequent progression of TLE. Albumin extravasation in human was prominent after status epilepticus (SE) in astrocytes and neurons, and also in hippocampus of TLE patients. Similarly, albumin and tracers were found in microglia, astrocytes and neurons of the rat. The BBB was permeable in rat limbic brain regions shortly after SE, but also in the latent and chronic epileptic phase. BBB permeability was positively correlated to seizure frequency in chronic epileptic rats. Artificial opening of the BBB by mannitol in the chronic epileptic phase induced a persistent increase in the number of seizures in the majority of rats. These findings indicate that BBB leakage occurs during epileptogenesis and the chronic epileptic phase and suggest that this can contribute to the progression of epilepsy. TGF-Beta Receptor-Mediated Albumin Uptake into Astrocytes Is Involved in Neocortical Epileptogenesis. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. Brain 2007; 130(Pt 2):535–547. It has long been recognized that insults to the cerebral cortex, such as trauma, ischaemia or infections, may result in the development of epilepsy, one of the most common neurological disorders. Human and animal studies have suggested that perturbations in neurovascular integrity and breakdown of the blood–brain barrier (BBB) lead to neuronal hypersynchronization and epileptiform activity, but the mechanisms underlying these processes are not known. In this study, we reveal a novel mechanism for epileptogenesis in the injured brain. We used focal neocortical, long-lasting BBB disruption or direct exposure to serum albumin in rats (51 and 13 animals, respectively, and 26 controls) as well as albumin exposure in brain slices in vitro. Most treated slices (72%, n = 189) displayed hypersynchronous propagating epileptiform field potentials when examined 5–49 days after treatment, but only 14% ( n = 71) of control slices showed similar responses. We demonstrate that direct brain exposure to serum albumin is associated with albumin uptake into astrocytes, which is mediated by transforming growth factor β receptors (TGF- βRs). This uptake is followed by down regulation of inward-rectifying potassium (Kir 4.1) channels in astrocytes, resulting in reduced buffering of extracellular potassium. This, in turn, leads to activity-dependent increased accumulation of extracellular potassium, resulting in facilitated N-methyl-D-aspartate-receptor-mediated neuronal hyperexcitability and eventually epileptiform activity. Blocking TGF- βR in vivo reduces the likelihood of epileptogenesis in albumin-exposed brains to 29.3% ( n = 41 slices, P < 0.05). We propose that the above-described cascade of events following common brain insults leads to brain dysfunction and eventually epilepsy and suggest TGF- βRs as a possible therapeutic target.

Publisher

SAGE Publications

Subject

Clinical Neurology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3