Calcium Currents Burst Back: A Possible Role for Dendrites in Epileptogenesis

Author:

Dudek F. Edward,Rogawski Michael A.

Abstract

Recruitment of Apical Dendritic T-type Ca2+Channels by Backpropagating Spikes Underlies De Novo Intrinsic Bursting in Hippocampal Epileptogenesis. Yaari Y, Yue C, Su H. J Physiol 2007;580(Pt 2):435–450. A single episode of status epilepticus (SE) induced in rodents by the convulsant pilocarpine, produces, after a latent period of 2 weeks, a chronic epileptic condition. During the latent period of epileptogenesis, most CA1 pyramidal cells that normally fire in a regular pattern, acquire low-threshold bursting behaviour, generating high-frequency clusters of 3–5 spikes as their minimal response to depolarizing stimuli. Recruitment of a Ni2+- and amiloride-sensitive T-type Ca2+ current ( ICaT), shown to be up-regulated after SE, plays a critical role in burst generation in most cases. Several lines of evidence suggest that ICaT driving bursting is located in the apical dendrites. Thus, bursting was suppressed by focally applying Ni2+ to the apical dendrites, but not to the soma. It was also suppressed by applying either tetrodotoxin or the KV7/M-type K+ channel agonist retigabine to the apical dendrites. Severing the distal apical dendrites 150 μM from the pyramidal layer also abolished this activity. Intradendritic recordings indicated that evoked bursts are associated with local Ni2+-sensitive slow spikes. Blocking persistent Na+ current did not modify bursting in most cases. We conclude that SE-induced increase in ICaT density in the apical dendrites facilitates their depolarization by the backpropagating somatic spike. The ICaT-driven dendritic depolarization, in turn, spreads towards the soma, initiating another backpropagating spike, and so forth, thereby creating a spike burst. The early appearance and predominance of ICaT-driven low-threshold bursting in CA1 pyramidal cells that experienced SE most probably contribute to the emergence of abnormal network discharges and may also play a role in the circuitry reorganization associated with epileptogenesis.

Publisher

SAGE Publications

Subject

Neurology (clinical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3