Abstract
2-Deoxy-d-Glucose Reduces Epilepsy Progression by NRSF-CtBP-Dependent Metabolic Regulation of Chromatin Structure. Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A. Nat Neurosci 2006;9(11):1382–1387. Temporal lobe epilepsy is a common form of drug-resistant epilepsy that sometimes responds to dietary manipulation such as the ‘ketogenic diet’. Here we have investigated the effects of the glycolytic inhibitor 2-deoxy-d-glucose (2DG) in the rat kindling model of temporal lobe epilepsy. We show that 2DG potently reduces the progression of kindling and blocks seizure-induced increases in the expression of brain-derived neurotrophic factor and its receptor, TrkB. This reduced expression is mediated by the transcription factor NRSF, which recruits the NADH-binding co-repressor CtBP to generate a repressive chromatin environment around the BDNF promoter. Our results show that 2DG has anticonvulsant and antiepileptic properties, suggesting that anti-glycolytic compounds may represent a new class of drugs for treating epilepsy. The metabolic regulation of neuronal genes by CtBP will open avenues of therapy for neurological disorders and cancer.