Arrested Glutamatergic Synapse Development in Human Partial Epilepsy

Author:

Anderson Matthew P.123

Affiliation:

1. Neurology and Pathology & Program in Neuroscience, Departments of Neurology and Pathology, Harvard Medical School, Boston, Massachusetts

2. Longwood Neuropathology Training Program, Department of Pathology, Brigham and Women's Hospital, Massachusetts

3. Beth Israel Deaconess Medical Center, Center for Life Science, Boston, Massachusetts

Abstract

While studying the brain function of the human partial epilepsy gene, leucine-rich glioma-inactivated 1 (LGI1), a new mechanism of human epileptogenesis was revealed—persistent immaturity of glutamatergic circuitries. LGI1, a novel secreted protein, was found to be increased during the postnatal period; when glutamatergic synapses both downregulate their presynaptic vesicular release probability and reduce their postsynaptic NMDA-receptor subunit NR2B. During this same period, the dendritic arbor and spines are pruned and remodeled. Using bacterial artificial chromosome transgenic mouse techniques, excess wild-type LGI1 was shown to magnify these critical brain developmental events in the hippocampal dentate gyrus; while an epilepsy-associated, truncated, dominant-negative form of LGI1 blocked them. By contrast, the hippocampal dentate granule neuron GABAergic synapses and intrinsic excitability were unaltered. A role for LGI1 in downregulating glutamate synapse function was confirmed by germline gene deletion; this intervention also revealed a selective increase of glutamatergic synaptic transmission with unaltered GABAergic synapses and intrinsic excitability of hippocampal CA1 pyramidal neurons. Interestingly, the role of LGI1 in neurological disease was further expanded when a subset of patients with limbic encephalitis (an autoimmune disorder with memory loss in 100% and seizures in 80% of individuals) were discovered to carry autoantibodies to LGI1.

Publisher

SAGE Publications

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3