Forecasting daily total pollen concentrations on a global scale

Author:

Makra László1ORCID,Coviello Luca23ORCID,Gobbi Andrea4,Jurman Giuseppe4,Furlanello Cesare56,Brunato Mauro7,Ziska Lewis H.8,Hess Jeremy J.9,Damialis Athanasios10ORCID,Garcia Maria Pilar Plaza11,Tusnády Gábor12,Czibolya Lilit1,Ihász István13,Deák Áron József1,Mikó Edit14,Dorner Zita15,Harry Susan K.16,Bruffaerts Nicolas17,Packeu Ann17,Saarto Annika18,Toiviainen Linnea18,Louna‐Korteniemi Maria18ORCID,Pätsi Sanna18ORCID,Thibaudon Michel19,Oliver Gilles19,Charalampopoulos Athanasios10,Vokou Despoina10,Przedpelska‐Wasowicz Ewa Maria20,Guðjohnsen Ellý Renée20,Bonini Maira21,Celenk Sevcan22,Ozaslan Cumali23,Oh Jae‐Won24,Sullivan Krista25,Ford Linda26,Kelly Michelle26,Levetin Estelle27ORCID,Myszkowska Dorota28,Severova Elena29ORCID,Gehrig Regula30,Calderón‐Ezquerro María Del Carmen31,Guerra César Guerrero31,Leiva‐Guzmán Manuel Andres32,Ramón Germán Darío33,Barrionuevo Laura Beatriz34,Peter Jonny35ORCID,Berman Dilys36,Katelaris Connie H.37,Davies Janet M.3839ORCID,Burton Pamela40,Beggs Paul J.41,Vergamini Sandra María42,Valencia‐Barrera Rosa María43,Traidl‐Hoffmann Claudia444546ORCID

Affiliation:

1. Institute of Economics and Rural Development, Faculty of Agriculture, University of Szeged Hódmezővásárhely Hungary

2. University of Trento Trento Italy

3. Enogis s.r.l. Trento Italy

4. Bruno Kessler Foundation Trento Italy

5. HK3 Lab Rovereto Italy

6. LIGHT Center Brescia Italy

7. Department of Information Engineering and Computer Science University of Trento Trento Italy

8. Mailman School of Public Health Columbia University New York New York USA

9. Department of Global Health University of Washington Seattle State of Washington USA

10. Department of Ecology, School of Biology, Faculty of Sciences Aristotle University of Thessaloniki Thessaloniki Greece

11. Environmental Medicine, Faculty of Medicine University Clinic of Augsburg & University of Augsburg Augsburg Germany

12. Alfréd Rényi Institute of Mathematics Budapest Hungary

13. Hungarian Meteorological Service Budapest Hungary

14. Institute of Animal Science and Wildlife Management, Faculty of Agriculture, University of Szeged Hódmezővásárhely Hungary

15. Department of Integrated Plant Protection Hungarian University of Agriculture and Life Science (MATE) (former SZIE), Plant Protection Institute Gödöllő Hungary

16. Department of Veterinary Medicine University of Alaska Fairbanks Fairbanks Alaska USA

17. Mycology & Aerobiology Service Brussels Belgium

18. Biodiversity Unit University of Turku Turku Finland

19. Réseau National de Surveillance Aérobiologique Brussieu France

20. Icelandic Institute of Natural History Garðabær Iceland

21. Department of Hygiene and Health Prevention ATS (Agency for Health Protection of Metropolitan Area of Milan), Hygiene and Public Health Service Milan Italy

22. Science and Art Faculty, Biology Department, Aerobiology Laboratory Uludag University Bursa Turkey

23. Department of Plant Protection (Weed Science) Dicle University Diyarbakir Turkey

24. Department of Pediatrics & Adolescent College of Medicine, Hanyang University, Medical Center, Guri Hospital Seoul South Korea

25. Clinical Research Institute Minneapolis Minnesota USA

26. Asthma and Allergy Center Bellevue Nebraska USA

27. University of Tulsa, College of Engineering & Natural Sciences Department of Biological Science Tulsa Oklahoma USA

28. Jagiellonian University, Medical College Department of Clinical and Environmental Allergology Kraków Poland

29. Biological Faculty Lomonosov Moscow State University Moscow Russia

30. Federal Department of Home Affairs FDHA, Federal Office of Meteorology and Climatology MeteoSwiss Zurich‐Airport Switzerland

31. Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México (UNAM), Circuito Exterior, Ciudad Universitaria México Mexico

32. Departamento de Química, Facultad de Ciencias Universidad de Chile Santiago Chile

33. Hospital Italiano Regional del Sur Bahía Blanca Argentina

34. Instituto de Alergia e Inmunologia del Sur, AAAeIC Pollen Station Bahía Blanca Argentina

35. Department of Medicine, Division of Allergy and Clinical Immunology, Groote Schuur Hospital University of Cape Town Groote Schuur South Africa

36. Allergy Immunology Department University of Cape Town Lung Institute Cape Town South Africa

37. Western Sydney University and Campbelltown Hospital Campbelltown New South Wales Australia

38. School of Biomedical Science Queensland University of Technology Herston Queensland Australia

39. Office of Research, Metro North Hospital and Health Service Herston Queensland Australia

40. Department of Medicine, Immunology and Allergy Campbelltown Hospital Campbelltown New South Wales Australia

41. School of Natural Sciences, Faculty of Science and Engineering Macquarie University Sydney New South Wales Australia

42. Centro de Ciȇncias Biológicas e da Saúde, Museu de Ciȇncias Naturais University of Caxias do Sul Caxias do Sul Brazil

43. Departamento de Biología Vegetal Universidad de León León Spain

44. Chair of Environmental Medicine Technical University of Munich Augsburg Germany

45. Institute of Environmental Medicine, Helmholtz Centre Munich, Augsburg Germany

46. Department of Environmental Medicine, Faculty of Medicine University of Augsburg Augsburg Germany

Abstract

AbstractBackgroundThere is evidence that global anthropogenic climate change may be impacting floral phenology and the temporal and spatial characteristics of aero‐allergenic pollen. Given the extent of current and future climate uncertainty, there is a need to strengthen predictive pollen forecasts.MethodsThe study aims to use CatBoost (CB) and deep learning (DL) models for predicting the daily total pollen concentration up to 14 days in advance for 23 cities, covering all five continents. The model includes the projected environmental parameters, recent concentrations (1, 2 and 4 weeks), and the past environmental explanatory variables, and their future values.ResultsThe best pollen forecasts include Mexico City (R2(DL_7) ≈ .7), and Santiago (R2(DL_7) ≈ .8) for the 7th forecast day, respectively; while the weakest pollen forecasts are made for Brisbane (R2(DL_7) ≈ .4) and Seoul (R2(DL_7) ≈ .1) for the 7th forecast day. The global order of the five most important environmental variables in determining the daily total pollen concentrations is, in decreasing order: the past daily total pollen concentration, future 2 m temperature, past 2 m temperature, past soil temperature in 28–100 cm depth, and past soil temperature in 0–7 cm depth. City‐related clusters of the most similar distribution of feature importance values of the environmental variables only slightly change on consecutive forecast days for Caxias do Sul, Cape Town, Brisbane, and Mexico City, while they often change for Sydney, Santiago, and Busan.ConclusionsThis new knowledge of the ecological relationships of the most remarkable variables importance for pollen forecast models according to clusters, cities and forecast days is important for developing and improving the accuracy of airborne pollen forecasts.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3