Uncovering epigenetic and transcriptional regulation of growth in Douglas‐fir: identification of differential methylation regions in mega‐sized introns

Author:

Vu Giang Thi Ha12ORCID,Cao Hieu Xuan12ORCID,Hofmann Martin3,Steiner Wilfried3,Gailing Oliver12ORCID

Affiliation:

1. Forest Genetics and Forest Tree Breeding University of Göttingen Göttingen Germany

2. Center for Integrated Breeding Research (CiBreed) University of Göttingen Göttingen Germany

3. Nordwestdeutsche Forstliche Versuchsanstalt Abteilung Waldgenressourcen Hann. Münden Germany

Abstract

SummaryTree growth performance can be partly explained by genetics, while a large proportion of growth variation is thought to be controlled by environmental factors. However, to what extent DNA methylation, a stable epigenetic modification, contributes to phenotypic plasticity in the growth performance of long‐lived trees remains unclear. In this study, a comparative analysis of targeted DNA genotyping, DNA methylation and mRNAseq profiling for needles of 44‐year‐old Douglas‐fir trees (Pseudotsuga menziesii (Mirb.) Franco) having contrasting growth characteristics was performed. In total, we identified 195 differentially expressed genes (DEGs) and 115 differentially methylated loci (DML) that are associated with genes involved in fitness‐related processes such as growth, stress management, plant development and energy resources. Interestingly, all four intronic DML were identified in mega‐sized (between 100 and 180 kbp in length) and highly expressed genes, suggesting specialized regulation mechanisms of these long intron genes in gymnosperms. DNA repetitive sequences mainly comprising long‐terminal repeats of retroelements are involved in growth‐associated DNA methylation regulation (both hyper‐ and hypomethylation) of 99 DML (86.1% of total DML). Furthermore, nearly 14% of the DML was not tagged by single nucleotide polymorphisms, suggesting a unique contribution of the epigenetic variation in tree growth.

Funder

Fachagentur Nachwachsende Rohstoffe

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3