Space‐for‐time substitutions in climate change ecology and evolution

Author:

Lovell Rebecca S. L.1ORCID,Collins Sinead1,Martin Simon H.1,Pigot Alex L.2,Phillimore Albert B.1

Affiliation:

1. Ashworth Laboratories Institute of Ecology and Evolution, The University of Edinburgh Charlotte Auerbach Road Edinburgh EH9 3FL UK

2. Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment University College London Gower Street London WC1E 6BT UK

Abstract

ABSTRACTIn an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long‐term biological data to use the past to anticipate the future, spatial climate–biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These ‘space‐for‐time substitutions’ (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate‐focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable – population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate–biotic relationships and (ii) the transferability of these relationships, i.e. whether climate–biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.

Funder

Natural Environment Research Council

Royal Society

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3