Data‐guided Authoring of Procedural Models of Shapes

Author:

Hossain Ishtiaque1ORCID,Shen I‐Chao2ORCID,Igarashi Takeo2ORCID,van Kaick Oliver1ORCID

Affiliation:

1. Carleton University Canada

2. The University of Tokyo Japan

Abstract

AbstractProcedural models enable the generation of a large amount of diverse shapes by varying the parameters of the model. However, writing a procedural model for replicating a collection of reference shapes is difficult, requiring much inspection of the original and replicated shapes during the development of the model. In this paper, we introduce a data‐guided method for aiding a programmer in creating a procedural model to replicate a collection of reference shapes. The user starts by writing an initial procedural model, and the system automatically predicts the model parameters for reference shapes, also grouping shapes by how well they are approximated by the current procedural model. The user can then update the procedural model based on the given feedback and iterate the process. Our system thus automates the tedious process of discovering the parameters that replicate reference shapes, allowing the programmer to focus on designing the high‐level rules that generate the shapes. We demonstrate through qualitative examples and a user study that our method is able to speed up the development time for creating procedural models of 2D and 3D man‐made shapes.

Funder

Natural Sciences and Engineering Research Council of Canada

Japan Science and Technology Corporation

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3