Affiliation:
1. Business Unit of Bioscience, Cluster Applied Bioinformatics Wageningen University and Research Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
2. East‐West International B.V. Heiligeweg 18 1601 PN Enkhuizen The Netherlands
3. Laboratory of Genetics Wageningen University Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
Abstract
SUMMARYThe allopolyploid okra (Abelmoschus esculentus) unveiled telomeric repeats flanking distal gene‐rich regions and short interstitial TTTAGGG telomeric repeats, possibly representing hallmarks of chromosomal speciation. Ribosomal RNA (rRNA) genes organize into 5S clusters, distinct from the 18S–5.8S–28S units, indicating an S‐type rRNA gene arrangement. The assembly, in line with cytogenetic and cytometry observations, identifies 65 chromosomes and a 1.45 Gb genome size estimate in a haploid sibling. The lack of aberrant meiotic configurations implies limited to no recombination among sub‐genomes. k‐mer distribution analysis reveals 75% has a diploid nature and 15% heterozygosity. The configurations of Benchmarking Universal Single‐Copy Ortholog (BUSCO), k‐mer, and repeat clustering point to the presence of at least two sub‐genomes one with 30 and the other with 35 chromosomes, indicating the allopolyploid nature of the okra genome. Over 130 000 putative genes, derived from mapped IsoSeq data and transcriptome data from public okra accessions, exhibit a low genetic diversity of one single nucleotide polymorphisms per 2.1 kbp. The genes are predominantly located at the distal chromosome ends, declining toward central scaffold domains. Long terminal repeat retrotransposons prevail in central domains, consistent with the observed pericentromeric heterochromatin and distal euchromatin. Disparities in paralogous gene counts suggest potential sub‐genome differentiation implying possible sub‐genome dominance. Amino acid query sequences of putative genes facilitated phenol biosynthesis pathway annotation. Comparison with manually curated reference KEGG pathways from related Malvaceae species reveals the genetic basis for putative enzyme coding genes that likely enable metabolic reactions involved in the biosynthesis of dietary and therapeutic compounds in okra.
Subject
Cell Biology,Plant Science,Genetics