Extreme drought alters plant community structure by changing dominant species growth in desert grassland

Author:

Wang Junfeng12ORCID,Zhang Lihua2ORCID,Xu Xuexuan3,Zhao Ruifeng2,Liu Beibei4,Gao Jiangping5

Affiliation:

1. College of Grassland Agriculture Northwest A & F University Yangling China

2. College of Geography and Environment Science Northwest Normal University Lanzhou China

3. Institute of Soil and Water Conservation Northwest A & F University Yangling China

4. College of History and Culture Northwest Normal University Lanzhou China

5. Institute of Geological and Natural Disaster Prevention Gansu Academy of Sciences Lanzhou China

Abstract

AbstractQuestionsInterannual precipitation changes, both in amount and frequency, are expected to increase due to climate change, and these changes could dramatically affect the structure and function of ecosystems. However, how plant life‐forms and dominant species regulate the plant community structure after precipitation changes remains unclear.LocationGaolan Experiment Station for Ecology and Agriculture Research of the Northwest Eco‐Environment and Resources Research Institute of the Chinese Academy of Sciences, located in the desert grassland of the western Loess Plateau, China.MethodsTo investigate the effect of precipitation changes on the growth of communities, life‐forms, and species, we used rain shelters and irrigation to create a variety of precipitation gradients (i.e., −40%, −20%, 0% [= CK, i.e., control treatment], +20%, +40% of ambient precipitation) in desert grasslands from 2014 to 2015.ResultsThe plant community density, coverage, and height were significantly decreased in the −40% treatment compared to CK. In contrast, species richness, Shannon–Wiener index, and Pielous' evenness did not respond significantly to the precipitation treatment. In addition, at the level of life‐forms, the density of perennial herbaceous plants was significantly increased by the +40% treatment in 2015, while the richness and density of annual herb were significantly inhibited by extreme drought. The effect on the shrub growth index of increasing and decreasing precipitation compared to the CK was insignificant. Furthermore, at the level of species, the growth of dominant species was obviously suppressed by the −40% and +40% treatment in 2015. However, the positive effect of the +40% treatment on the growth of rare species reached significant levels in 2015. Also, the change in precipitation did not have a significant effect on the growth of companion species. Dominant species primarily drove the response of community‐level plant growth to precipitation changes over the three‐year study period.ConclusionThe response of plant community composition to changes in precipitation in desert grassland is largely regulated by changes in the composition of the dominant species. This finding could also provide a better prediction of the effects of extreme drought on desert grassland plant communities in the scenarios of future global climate change.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3