Cdk5 phosphorylation‐dependent C9orf72 degradation promotes neuronal death in Parkinson's disease models

Author:

Xu Xingfeng12,Li Mao12,Su Yan12,Wang Qi12,Qin Peifang3,Huang Haitao3,Zhang Yuting3,Zhou Yali3,Yan Jianguo12ORCID

Affiliation:

1. Department of Physiology Guilin Medical University Guilin Guangxi China

2. Guangxi Key Laboratory of Brain and Cognitive Neuroscience Guilin Medical University Guilin Guangxi China

3. Department of Microbiology Guilin Medical University Guilin Guangxi China

Abstract

AbstractAimsChromosome 9 open reading frame 72 (C9orf72) is one of the most dazzling molecules in neurodegenerative diseases, albeit that its role in Parkinson's disease (PD) remains unknown. This article aimed to explore the potential mechanism of C9orf72 involved in the pathogenesis of PD.MethodsThe expression and phosphorylation levels of C9orf72 were examined by Western blotting, RT‐PCR, and immunoprecipitation using PD models. Multiple bioinformatics software was used to predict the potential phosphorylation sites of C9orf72 by Cdk5, followed by verification of whether Cdk5‐inhibitor ROSCOVITINE could reverse the degradation of C9orf72 in PD. By constructing the sh‐C9orf72‐knockdown adenovirus and overexpressing the FLAG‐C9orf72 plasmid, the effects of C9orf72 knockdown and overexpression, respectively, were determined. A short peptide termed Myr‐C9orf72 was used to verify whether interfering with Cdk5 phosphorylation at the Ser9 site of the C9orf72 protein could alleviate autophagy disorder, neuronal death, and movement disorder in PD models.ResultsThe expression level of the C9orf72 protein was significantly reduced, albeit the mRNA expression was not changed in the PD models. Moreover, the phosphorylation level was enhanced, and its reduction was mainly degraded by the ubiquitin‐proteasome pathway. The key nervous system kinase Cdk5 directly phosphorylated the S9 site of the C9orf72 protein, which promoted the degradation of the C9orf72 protein. The knockdown of C9orf72 aggravated autophagy dysfunction and increased neuronal loss and motor dysfunction in substantia nigra neurons of PD mice. The overexpression of C9orf72 alleviated autophagy dysfunction in PD neurons. Specifically, interference with Cdk5 phosphorylation at the S9 site of C9orf72 alleviated autophagy dysfunction, neuronal death, and motor dysfunction mediated by C9orf72 protein degradation during PD.ConclusionsCumulatively, our findings illustrate the importance of the role of C9orf72 in the regulation of neuronal death during PD progression via the Cdk5‐dependent degradation.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3