The biomechanical efficacy of a hybrid support surface in protecting supine patients from sacral pressure ulcers

Author:

Katz Tomer1,Gefen Amit1ORCID

Affiliation:

1. Department of Biomedical Engineering, Faculty of Engineering Tel Aviv University Tel Aviv Israel

Abstract

AbstractSupport surfaces are the most important pressure ulcer/injury prevention technology available to clinicians for protecting their at‐risk patients. A hybrid support surface marries the benefits of reactive and active support surfaces, by using high‐quality foam material inside inflatable air cells. When used in its “static mode”, it is a constant low air pressure mattress which delivers pressure redistribution in response to patient bodyweight and movements, by maximising the immersion and envelopment performance of the support surface. When used in its powered “dynamic mode”, this system further delivers alternating pressure care via the connected foam and air cells. Modes of action of hybrid support surfaces were never studied quantitatively before, excluding through the limited scope of interface pressure mapping. In this work, we developed a novel computational modelling framework and simulations to visualise and quantify the state of soft tissue loading at the buttocks of a supine patient positioned on a hybrid support surface, in both the static and dynamic modes. We found that the dynamic mode effectively shifts deep concentrated soft tissue loading from under the sacral bone (towards the sacral promontory) to the tip of the sacrum (coccyx) and vice versa, and thereby, generates a deep tissue offloading effect.

Funder

Ministry of Science, Technology and Space

Publisher

Wiley

Subject

Dermatology,Surgery

Reference21 articles.

1. Our contemporary understanding of the aetiology of pressure ulcers/pressure injuries

2. Direct Healthcare Group Technical Specifications for the SMARTresponse® system.https://www.directhealthcaregroup.com/products/dyna-form-mercury-advance/(last accessed in February 19th 2023)

3. Hybrid support surfaces made easy;Fletcher J;Wound Int,2015

4. Effects of ambient conditions on the risk of pressure injuries in bedridden patients-multi-physics modelling of microclimate

5. Computational studies of the biomechanical efficacy of a minimum tissue deformation mattress in protecting from sacral pressure ulcers in a supine position

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3