Identification and verification of ferroptosis‐related genes in diabetic foot using bioinformatics analysis

Author:

Wang Xiaoxiang1,Dai Shangtai2,Zheng Wenlian1,Chen Wentao1,Li Jiehua3,Chen Xiaodong4,Zhou Sitong3,Yang Ronghua5

Affiliation:

1. The First Clinical Medical College Guangdong Medical University Zhanjiang China

2. Medical school Kunming University of Science and Technology, The First People's Hospital of Yunnan Province Kunming China

3. Department of Dermatology The First People's Hospital of Foshan Foshan China

4. Department of Burn Surgery and Skin Regeneration The First People's Hospital of Foshan Foshan China

5. Department of Burn and Plastic Surgery, Guangzhou First People's Hospital South China University of Technology Guangzhou China

Abstract

AbstractFerroptosis is a novel form of cell death that plays a key role in several diseases, including inflammation and tumours; however, the role of ferroptosis‐related genes in diabetic foot remains unclear. Herein, diabetic foot‐related genes were downloaded from the Gene Expression Omnibus and the ferroptosis database (FerrDb). The least absolute shrinkage and selection operator regression algorithm was used to construct a related risk model, and differentially expressed genes were analysed through immune infiltration. Finally, we identified relevant core genes through a protein–protein interaction network, subsequently verified using immunohistochemistry. Comprehensive analysis showed 198 genes that were differentially expressed during ferroptosis. Based on functional enrichment analysis, these genes were primarily involved in cell response, chemical stimulation, and autophagy. Using the CIBERSORT algorithm, we calculated the immune infiltration of 22 different types of immune cells in diabetic foot and normal tissues. The protein–protein interaction network identified the hub gene TP53, and according to immunohistochemistry, the expression of TP53 was high in diabetic foot tissues but low in normal tissues. Accordingly, we identified the ferroptosis‐related gene TP53 in the diabetic foot, which may play a key role in the pathogenesis of diabetic foot and could be used as a potential biomarker.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

Wiley

Subject

Dermatology,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3