Affiliation:
1. School of Biomedical and Pharmaceutical Sciences Guangdong University of Technology Guangzhou China
2. Guangdong Key Laboratory of Animal Conservation and Resource Utilization Institute of Zoology, Guangdong Academy of Sciences Guangzhou China
Abstract
AbstractVibrio parahaemolyticus (V. parahaemolyticus) is a major pathogen that causes substantial losses in the marine fishery. With the emergence of antibiotic resistance, vaccines have become the most effective approach against V. parahaemolyticus infection. Adhesion factors on the cell surface are pivotal in the colonization and pathogenesis of V. parahaemolyticus within the host, highlighting their potential as vaccine candidates. This study aims to assess the immunogenicity and potential of recombinant V. parahaemolyticus MAM7 (rMAM7) as a vaccine candidate. Initially, we cloned and purified the MAM7 protein of V. parahaemolyticus. Moreover, after 4 weeks of vaccination, the fish were challenged with V. parahaemolyticus. rMAM7 demonstrated a certain protective effect. Immunological analysis revealed that rMAM7 immunization‐induced antibody production and significantly increased acid phosphatase (ACP) and alkaline phosphatase (AKP) activity in hybrid tilapia. Furthermore, serum bactericidal tests demonstrated a lower bacterial survival rate in the rMAM7 group compared to PBS and rTrxa. qRT‐PCR results indicated that rMAM7 significantly upregulated CD4, CD8 and IgM gene expression, suggesting the induction of Th1 and Th2 responses in hybrid tilapia. Overall, these findings highlight the potential application of MAM7 from V. parahaemolyticus in the development of protein vaccines.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
National Natural Science Foundation of China
Subject
Veterinary (miscellaneous),Aquatic Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献