Glutathione amino acid precursors protect skin from UVB‐induced damage and improve skin tone

Author:

Cui Xiao1,Mi Tingyan1,Zhang Hong1,Gao Ping1,Xiao Xue1,Lee Jianming2,Guelakis Marian2,Gu Xuelan1

Affiliation:

1. Unilever R&D Shanghai Shanghai China

2. Unilever R&D Trumbull Trumbull Connecticut USA

Abstract

AbstractBackgroundUV radiation exposure causes skin irritation, erythema, darkening and barrier disruption by inducing oxidative stress and inflammation. Glutathione, a master antioxidant, plays an important role in the antioxidant defence network of the skin.ObjectiveThis study aimed to assess the in vitro protective effects of the glutathione amino acid precursors blend (GAP) on transcriptomic and phenotypic endpoints against UVB‐induced challenges.MethodsNormal human epidermal melanocytes (NHEMs) were exposed to GAP, ascorbic acid (AA) and its derivatives. Viability was assessed using the CCK8 method. Melakutis®, a pigmented living skin equivalent (pLSE) model, underwent repeated 50 mJ/cm2 UVB irradiation with or without GAP treatment. Images of the model were captured with consistent camera parameters, and the model's light intensity was measured using a spectrophotometer. Melanin content was determined by measuring absorbance at 405 nm. Confirmation of melanin deposition and distribution was achieved through Fontana‐Masson staining. Transcriptomic analysis was conducted using RNA sequencing (RNA‐Seq), and a machine learning approach was employed for transcriptomic aging clock analysis.ResultsIn NHEMs, all tested compounds exhibited over 85% viability compared to the vehicle control, indicating no heightened risk of cytotoxicity. Notably, GAP demonstrated greater efficacy in inhibiting melanin production than AA derivatives at equivalent concentrations. In pLSE models, GAP notably enhanced model lightness, and reduced melanin content and deposition following the UVB challenge, whereas AA showed minimal impact. GAP effectively counteracted UVB‐induced alterations in gene expression linked to pigmentation, inflammation and aging. Moreover, recurrent UVB exposure substantially elevated the biological age of pLSE models, a phenomenon mitigated by GAP treatment.ConclusionsIn NHEMs, GAP exhibited enhanced effectiveness in inhibiting melanin production at identical tested doses in comparison to AA derivatives. Noteworthy protective effects of GAP against UVB irradiation were observed in the pLSE models, as evidenced by skin pigmentation measurements and transcriptomic changes.

Funder

Unilever

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3