Regulation of trehalose metabolism mediated by validamycin on chitin synthesis in Spodoptera frugiperda

Author:

Yang Yan‐qi1ORCID,Liang Yu‐jian1ORCID,Zhi Jun‐rui1ORCID,Li Ding‐yin1ORCID,Li Cao12ORCID

Affiliation:

1. Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region Institute of Entomology, Guizhou University Guiyang China

2. Institute of Plant Protection Guizhou Academy of Agricultural Sciences Guiyang China

Abstract

AbstractTrehalase (TRE) is a key enzyme for degrading trehalose, which plays a vital role in the growth and development of insects. Although validamycin, a compound belonging to a class of efficient antibiotics and fungicides, can control pests by suppressing TRE activities, it remains unknown whether it acts on both trehalose and chitin metabolism in Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), a major pest of maize (Zea mays L., Poaceae). This study investigated the changes in trehalose metabolism after validamycin treatment in S. frugiperda and its effects on the downstream chitin synthesis pathway. Compared with the control, S. frugiperda exhibited varying degrees of mortality after treatment with four concentrations of validamycin, showing a dose‐dependent increase in mortality rate. The mortality rates 24 and 48 h after treatment with 0.07 mg μL−1 validamycin were 35.6% and 42.2%, respectively, indicating the effective lethal concentration. Treatment with 0.07 mg μL−1 validamycin led to developmental delay, abnormal molting, and death in S. frugiperda, but it exerted no lasting effects on the survival rate, pupal weight, and phenotype during its subsequent developmental stages. At 24 h after validamycin treatment, TRE1 and TRE2 activities and glucose content decreased significantly, whereas the trehalose content increased significantly. Treatment with validamycin significantly upregulated TRE1 and TRE2 expression after 24 and 48 h and downregulated the mRNA expression of chitin synthase A and B genes. However, after 72 h, chitin content was not significantly affected. Hence, validamycin can destroy the dynamic transformation balance of trehalose and glucose by inhibiting the activities of the two TREs, and further affect the expression of downstream chitin synthase genes. These findings provide a theoretical basis for using TRE inhibitors to control S. frugiperda.

Funder

Guizhou Provincial Science and Technology Department

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3